Last updated: 2021-10-21

Checks: 7 0

Knit directory: pair_con_select/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190211) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 4082e98. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rproj.user/
    Ignored:    analysis/.DS_Store
    Ignored:    analysis/.Rproj.user/
    Ignored:    code/.DS_Store
    Ignored:    data/.DS_Store
    Ignored:    data/depmap_alkati/.DS_Store
    Ignored:    data/depmap_alkati/Data_Raw/.DS_Store
    Ignored:    data/depmap_alkati/Data_Raw/CCLE/CCLE_RNAseq_ExonUsageRatio_20180929.gct
    Ignored:    data/skmel28_sos1_mekq56p_vemurafenib.csv.sb-ea24b981-dvFz4V/
    Ignored:    data/tcga_brca_expression/
    Ignored:    data/tcga_luad_expression/
    Ignored:    data/tcga_skcm_expression/
    Ignored:    output/.DS_Store
    Ignored:    output/alkati_filtercutoff_allfilters.csv

Untracked files:
    Untracked:  analysis/Archive/
    Untracked:  code/archive/
    Untracked:  code/contab_downsampler.R
    Untracked:  code/contab_simulator.R
    Untracked:  output/Plots/

Unstaged changes:
    Deleted:    analysis/alkati_cell_line_tae684_response.Rmd
    Modified:   analysis/alkati_subsampling_simulations.Rmd
    Deleted:    analysis/analysis.Rproj
    Modified:   analysis/index.Rmd
    Deleted:    analysis/pairwise_comparisons_conditional_selection_simulated_cohorts.Rmd
    Deleted:    analysis/score_heatmap_bestoption1_newmethod.pdf
    Deleted:    analysis/updated_resampling_strategy.Rmd
    Modified:   analysis/updated_resampling_strategy2.Rmd
    Deleted:    analysis/updated_resampling_strategy3.Rmd
    Deleted:    code/README.md
    Deleted:    code/mut_excl_genes_datapoints.R
    Deleted:    code/mut_excl_genes_generator3.R
    Deleted:    code/quadratic_solver.R
    Deleted:    code/shinyfunc.R
    Deleted:    code/simresults_generator.R
    Deleted:    output/alkati_ccle_tae684_plot.pdf
    Deleted:    output/alkati_luad_exonimbalance.pdf
    Deleted:    output/alkati_mtn_pval_fig2B.pdf
    Deleted:    output/alkati_skcm_exonimbalance.pdf
    Deleted:    output/alkati_subsamplesize_orval_fig1c.pdf
    Deleted:    output/alkati_subsamplesize_pval_fig.pdf
    Deleted:    output/alkati_subsamplesize_pval_fig1c.pdf
    Deleted:    output/baf3_alkati_figure_deltaadjusted_doublings.pdf
    Deleted:    output/baf3_alkati_figure_deltaadjusted_doublings_updated.pdf
    Deleted:    output/baf3_barplot.pdf
    Deleted:    output/baf3_elisa_barplot.pdf
    Deleted:    output/baf3_f1174_figure_deltaadjusted_doublings.pdf
    Deleted:    output/egfr_luad_exonimbalance.pdf
    Deleted:    output/fig1c_3719_4.pdf
    Deleted:    output/fig1c_52219.pdf
    Deleted:    output/fig2b2_filtercutoff_atinras_totalalk.pdf
    Deleted:    output/fig2b_filtercutoff_atibraf.pdf
    Deleted:    output/fig2b_filtercutoff_atinras.pdf
    Deleted:    output/melanoma_vemurafenib_fig.pdf
    Deleted:    output/melanoma_vemurafenib_fig_bottom.pdf
    Deleted:    output/melanoma_vemurafenib_fig_top.pdf
    Deleted:    output/suppfig1..pdf
    Deleted:    output/suppfig1_52219.pdf
    Deleted:    paircon_boxplot_alkati.pdf
    Deleted:    shinyapp/code/README.md
    Deleted:    shinyapp/code/alldata_compiler.R
    Deleted:    shinyapp/code/contab_maker.R
    Deleted:    shinyapp/code/mut_excl_genes_datapoints.R
    Deleted:    shinyapp/code/mut_excl_genes_generator.R
    Deleted:    shinyapp/code/quadratic_solver.R
    Deleted:    shinyapp/code/shinyfunc.R
    Deleted:    shinyapp/code/simresults_generator.R
    Deleted:    shinyapp/rsconnect/shinyapps.io/haider-inam/shinyapp.dcf
    Deleted:    shinyapp/server.R
    Deleted:    shinyapp/ui.r
    Deleted:    shinyapp/www/decision_tree.png
    Deleted:    shinyapp/www/decision_tree_transparent.png
    Deleted:    shinyapp/www/logo.png
    Deleted:    shinyapp/www/logo2.png
    Deleted:    shinyapp/www/logo3.png
    Deleted:    shinyapp/www/logo4.png

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/alkati_subsampling_simulations_2.Rmd) and HTML (docs/alkati_subsampling_simulations_2.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 4082e98 haiderinam 2021-10-21 wflow_publish(“analysis/alkati_subsampling_simulations_2.Rmd”)

source("code/contab_maker.R")
source("code/contab_simulator.R")
source("code/contab_downsampler.R")
source("code/alldata_compiler.R")
source("code/mut_excl_genes_generator.R")

# source("../code/contab_maker.R")
# source("../code/contab_simulator.R")
# source("../code/contab_downsampler.R")
# source("../code/alldata_compiler.R")
# source("../code/mut_excl_genes_generator.R")

Section 1: Pairwise Comparison of ALKATI BRAF vs BRAF NRAS (next section compares ALKATI NRAS vs BRAF NRAS)

  nameposctrl1<-'BRAF'
  #Positive control 1
  nameposctrl2<-'NRAS'
  #Oncogene in Question
  namegene<-'ATI'
  #Mutation Boolean (Y or N)
  mtn<-'N'
  #Name Mutation for Positive Ctrl 1
  nameposctrl1mt<-'V600E'
  #Name of Mutation for Positive Ctrl 2
  nameposctrl2mt<-'Q61L'

alldata=read.csv("output/all_data_skcm.csv",sep=",",header=T,stringsAsFactors=F)
# alldata=read.csv("../output/all_data_skcm.csv",sep=",",header=T,stringsAsFactors=F)
head(alldata)
  X        Patid mean_RPKM_1.19 mean_RPKM_20.29 Ratio20.29 mRNA_count  BRAF
1 1 TCGA-BF-A1PU     0.62445977      1.24042009   1.986389        948 V600E
2 2 TCGA-BF-A1PV     0.02099345      0.15815619   7.533598         82   NaN
3 3 TCGA-BF-A1PX     0.01752838      0.09612414   5.483914         92 V600E
4 4 TCGA-BF-A1PZ     0.19874434      7.27553619  36.607514       2822   NaN
5 5 TCGA-BF-A1Q0     2.13353636      3.71661801   1.741999       2211   NaN
6 6 TCGA-BF-A3DJ     0.06244694      0.55656239   8.912565        281 V600E
  NRAS RSEM_normalized ATI
1  NaN        107.1429   0
2 Q61L          8.9659   0
3  NaN         14.5985   0
4 Q61R        329.0810   1
5  NaN        277.0434   0
6  NaN         35.1542   0
# rm(list=ls())
###Not mutation specific generation of counts###
alldata_comp=alldata_compiler(alldata,nameposctrl1,nameposctrl2,namegene,'N',"N/A","N/A")[[2]]
head(alldata_comp)
  X        Patid Positive_Ctrl1 Positive_Ctrl2 genex rndmarray
1 1 TCGA-BF-A1PU              1              0     0         0
2 2 TCGA-BF-A1PV              0              1     0         1
3 3 TCGA-BF-A1PX              1              0     0         0
4 4 TCGA-BF-A1PZ              0              1     1         0
5 5 TCGA-BF-A1Q0              0              0     0         0
6 6 TCGA-BF-A3DJ              1              0     0         0
###Calculating Odds ratios and GOI frequencies for the raw data###
cohort_size=length(alldata_comp$Positive_Ctrl1)
pc1pc2_contab_counts=contab_maker(alldata_comp$Positive_Ctrl1,alldata_comp$Positive_Ctrl2,alldata_comp)[2:1, 2:1]
# pc1pc2_contab_counts=pc1new_pc2_contab

goipc1_contab_counts=contab_maker(alldata_comp$genex,alldata_comp$Positive_Ctrl1,alldata_comp)[2:1, 2:1]
# goipc1_contab_counts=goinew_pc1_contab
###Had to add the 2:1 bits because the contab maker spits out NN YY whereas we wanted YNYN
goipc2_contab_counts=contab_maker(alldata_comp$genex,alldata_comp$Positive_Ctrl2,alldata_comp)[2:1, 2:1]
# pc1pc2_contab_counts=gene_pair_2_table
# goipc1_contab_counts=contab_maker(alldata_comp$genex,alldata_comp$Positive_Ctrl1,alldata_comp)[2:1, 2:1]
# goipc1_contab_counts=gene_pair_1_table

cohort_size_curr=cohort_size
# goipc2_contab_counts=contab_maker(alldata_comp$genex,alldata_comp$Positive_Ctrl2,alldata_comp)[2:1, 2:1]
pc1pc2_contab_probabilities=pc1pc2_contab_counts/cohort_size_curr
goipc1_contab_probabilities=goipc1_contab_counts/cohort_size_curr
goipc2_contab_probabilities=goipc2_contab_counts/cohort_size_curr
# pc1pc2_contab_probabilities=pc1pc2_contab_counts
# goipc1_contab_probabilities=goipc1_contab_counts
# goipc2_contab_probabilities=goipc2_contab_counts/cohort_size

or_pc1pc2=pc1pc2_contab_probabilities[1,1]*pc1pc2_contab_probabilities[2,2]/(pc1pc2_contab_probabilities[1,2]*pc1pc2_contab_probabilities[2,1])
or_goipc1=goipc1_contab_probabilities[1,1]*goipc1_contab_probabilities[2,2]/(goipc1_contab_probabilities[1,2]*goipc1_contab_probabilities[2,1])
or_goipc2=goipc2_contab_probabilities[1,1]*goipc2_contab_probabilities[2,2]/(goipc2_contab_probabilities[1,2]*goipc2_contab_probabilities[2,1])

goi_freq=goipc1_contab_probabilities[1,1]+goipc1_contab_probabilities[1,2]
# goi_freq=.25
# class(goi_freq)

###

###Downsampling PC1 to the probability of GOI without changing ORs###
###The function below converts contingency table data to a new contingency table in which the data is downsampled to the desired frequency, aka the frequency of the GOI in this case###
pc1new_pc2_contab=contab_downsampler(pc1pc2_contab_probabilities,goi_freq)
goinew_pc1_contab=contab_downsampler(goipc1_contab_probabilities,goi_freq)
goinew_pc2_contab=contab_downsampler(goipc2_contab_probabilities,goi_freq)
##original contab:
head(pc1pc2_contab_probabilities)
           [,1]      [,2]
[1,] 0.01424501 0.4985755
[2,] 0.25925926 0.2279202
###downsampled contab:
head(pc1new_pc2_contab)
            [,1]      [,2]
[1,] 0.003165559 0.1107946
[2,] 0.471518302 0.4145216
pc1rawpc2_contabs_sims=contab_simulator(pc1pc2_contab_probabilities,1000,cohort_size_curr)
pc1pc2_contabs_sims=contab_simulator(pc1new_pc2_contab,1000,cohort_size_curr)
goipc1_contabs_sims=contab_simulator(goinew_pc1_contab,1000,cohort_size_curr)
goipc2_contabs_sims=contab_simulator(goinew_pc2_contab,1000,cohort_size_curr)
# goipc2_contabs_sims=contab_simulator(goinew_pc2_contab,1000,cohort_size)
# head(pc1pc2_contabs_sims) #each row in this dataset is a new contab
pc1rawpc2_contabs_sims=data.frame(pc1rawpc2_contabs_sims)
  pc1rawpc2_contabs_sims=pc1rawpc2_contabs_sims%>%
  mutate(or=p11*p00/(p10*p01))

pc1pc2_contabs_sims=data.frame(pc1pc2_contabs_sims)
  pc1pc2_contabs_sims=pc1pc2_contabs_sims%>%
  mutate(or=p11*p00/(p10*p01))
  
goipc1_contabs_sims=data.frame(goipc1_contabs_sims)
  goipc1_contabs_sims=goipc1_contabs_sims%>%
  mutate(or=p11*p00/(p10*p01))
  
goipc2_contabs_sims=data.frame(goipc2_contabs_sims)
goipc2_contabs_sims=goipc2_contabs_sims%>%
mutate(or=p11*p00/(p10*p01))
  
# goipc2_contabs_sims=data.frame(goipc2_contabs_sims)
#   goipc2_contabs_sims=goipc2_contabs_sims%>%
#   mutate(or=p11*p00/(p10*p01))
pc1rawpc2_contabs_sims$comparison="pc1rawpc2"
pc1pc2_contabs_sims$comparison="pc1pc2"
goipc1_contabs_sims$comparison="goipc1"
goipc2_contabs_sims$comparison="goipc2"
or_median_raw=quantile(pc1rawpc2_contabs_sims$or,na.rm = T)[3]
or_uq_raw=quantile(pc1rawpc2_contabs_sims$or,na.rm = T)[4]
or_median_downsampled=quantile(pc1pc2_contabs_sims$or,na.rm = T)[3]
or_uq_downsampled=quantile(pc1pc2_contabs_sims$or,na.rm = T)[4]

pc1rawpc2_contabs_sims=pc1rawpc2_contabs_sims%>%
  mutate(isgreater_raw_median=case_when(or>or_median_raw~1,
                             TRUE~0),
         isgreater_raw_uq=case_when(or>or_uq_raw~1,
                             TRUE~0),
         isgreater_median=case_when(or>or_median_downsampled~1,
                             TRUE~0),
         isgreater_uq=case_when(or>or_uq_downsampled~1,
                             TRUE~0)
         )
pc1pc2_contabs_sims=pc1pc2_contabs_sims%>%
  mutate(isgreater_raw_median=case_when(or>or_median_raw~1,
                             TRUE~0),
         isgreater_raw_uq=case_when(or>or_uq_raw~1,
                             TRUE~0),
         isgreater_median=case_when(or>or_median_downsampled~1,
                             TRUE~0),
         isgreater_uq=case_when(or>or_uq_downsampled~1,
                             TRUE~0)
         )
goipc1_contabs_sims=goipc1_contabs_sims%>%
  mutate(isgreater_raw_median=case_when(or>or_median_raw~1,
                             TRUE~0),
         isgreater_raw_uq=case_when(or>or_uq_raw~1,
                             TRUE~0),
         isgreater_median=case_when(or>or_median_downsampled~1,
                             TRUE~0),
         isgreater_uq=case_when(or>or_uq_downsampled~1,
                             TRUE~0)
         )

goipc2_contabs_sims=goipc2_contabs_sims%>%
  mutate(isgreater_raw_median=case_when(or>or_median_raw~1,
                             TRUE~0),
         isgreater_raw_uq=case_when(or>or_uq_raw~1,
                             TRUE~0),
         isgreater_median=case_when(or>or_median_downsampled~1,
                             TRUE~0),
         isgreater_uq=case_when(or>or_uq_downsampled~1,
                             TRUE~0)
         )
# pc1pc2_contabs_sims=pc1pc2_contabs_sims%>%
#   mutate(isgreater=case_when(or>=or_pc1pc2~1,
#                              TRUE~0))
# goipc1_contabs_sims=goipc1_contabs_sims%>%
#   mutate(isgreater=case_when(or>=or_pc1pc2~1,
#                              TRUE~0))
# goipc2_contabs_sims=goipc2_contabs_sims%>%
#   mutate(isgreater=case_when(or>=or_pc1pc2~1,
#                              TRUE~0))
pc1rawpc2_isgreater_raw_median=sum(pc1rawpc2_contabs_sims$isgreater_raw_median)
pc1rawpc2_isgreater_raw_uq=sum(pc1rawpc2_contabs_sims$isgreater_raw_uq)
pc1rawpc2_isgreater_median=sum(pc1rawpc2_contabs_sims$isgreater_median)
pc1rawpc2_isgreater_uq=sum(pc1rawpc2_contabs_sims$isgreater_uq)

pc1pc2_isgreater_raw_median=sum(pc1pc2_contabs_sims$isgreater_raw_median)
pc1pc2_isgreater_raw_uq=sum(pc1pc2_contabs_sims$isgreater_raw_uq)
pc1pc2_isgreater_median=sum(pc1pc2_contabs_sims$isgreater_median)
pc1pc2_isgreater_uq=sum(pc1pc2_contabs_sims$isgreater_uq)

goipc1_isgreater_raw_median=sum(goipc1_contabs_sims$isgreater_raw_median)
goipc1_isgreater_raw_uq=sum(goipc1_contabs_sims$isgreater_raw_uq)
goipc1_isgreater_median=sum(goipc1_contabs_sims$isgreater_median)
goipc1_isgreater_uq=sum(goipc1_contabs_sims$isgreater_uq)


plotting_df=rbind(pc1pc2_contabs_sims,goipc1_contabs_sims,goipc2_contabs_sims)
# plotting_df=rbind(pc1pc2_contabs_sims,goipc1_contabs_sims)
# 


ggplot(plotting_df,aes(x=(or),fill=comparison))+
  geom_histogram(bins=40,alpha=0.55,position="identity")+
  # geom_histogram(bins=50,alpha=0.55)+
  scale_y_continuous(expand=c(0,0),name="Count")+
  scale_x_continuous(expand=c(0,0),trans="log10",name="Odds Ratio")+
  scale_fill_brewer(palette="Set2")+
  # geom_vline(xintercept = or_pc1pc2)+
  cleanup
Warning: Transformation introduced infinite values in continuous x-axis
Warning: Removed 320 rows containing non-finite values (stat_bin).

ggplot(plotting_df,aes(y=(or),x=comparison),fill=factor(comparison))+
  geom_boxplot()+
  scale_y_continuous(name="Odds Ratio",trans="log10")+
  scale_x_discrete(name="")+
  scale_fill_brewer(palette="Set2")+
  geom_hline(yintercept = or_uq_downsampled,linetype="dashed")+
  cleanup+
  theme(legend.position = "none",
        axis.ticks.x = element_blank())
Warning: Transformation introduced infinite values in continuous y-axis
Warning: Removed 320 rows containing non-finite values (stat_boxplot).

# ggsave("paircon_boxplot.pdf",width = 3,height=2,units="in",useDingbats=F)

Section 1 Conclusion: ALKATI vs BRAF has no overlap with BRAF vs NRAS, i.e. 100% of the BRAF NRAS simulations lie outside of the ALKATI BRAF regime.

Section 2: Pairwise Comparison of ALKATI NRAS vs BRAF NRAS (the previous section compared ALKATI BRAS vs BRAF NRAS)

  nameposctrl1<-'NRAS'
  #Positive control 1
  nameposctrl2<-'BRAF'
  #Oncogene in Question
  namegene<-'ATI'
  #Mutation Boolean (Y or N)
  mtn<-'N'
  #Name Mutation for Positive Ctrl 1
  nameposctrl1mt<-'Q61L'
  #Name of Mutation for Positive Ctrl 2
  nameposctrl2mt<-'V600E'

alldata=read.csv("output/all_data_skcm.csv",sep=",",header=T,stringsAsFactors=F)
# alldata=read.csv("../output/all_data_skcm.csv",sep=",",header=T,stringsAsFactors=F)
head(alldata)
  X        Patid mean_RPKM_1.19 mean_RPKM_20.29 Ratio20.29 mRNA_count  BRAF
1 1 TCGA-BF-A1PU     0.62445977      1.24042009   1.986389        948 V600E
2 2 TCGA-BF-A1PV     0.02099345      0.15815619   7.533598         82   NaN
3 3 TCGA-BF-A1PX     0.01752838      0.09612414   5.483914         92 V600E
4 4 TCGA-BF-A1PZ     0.19874434      7.27553619  36.607514       2822   NaN
5 5 TCGA-BF-A1Q0     2.13353636      3.71661801   1.741999       2211   NaN
6 6 TCGA-BF-A3DJ     0.06244694      0.55656239   8.912565        281 V600E
  NRAS RSEM_normalized ATI
1  NaN        107.1429   0
2 Q61L          8.9659   0
3  NaN         14.5985   0
4 Q61R        329.0810   1
5  NaN        277.0434   0
6  NaN         35.1542   0
# rm(list=ls())
###Not mutation specific generation of counts###
alldata_comp=alldata_compiler(alldata,nameposctrl1,nameposctrl2,namegene,'N',"N/A","N/A")[[2]]
head(alldata_comp)
  X        Patid Positive_Ctrl1 Positive_Ctrl2 genex rndmarray
1 1 TCGA-BF-A1PU              0              1     0         0
2 2 TCGA-BF-A1PV              1              0     0         0
3 3 TCGA-BF-A1PX              0              1     0         0
4 4 TCGA-BF-A1PZ              1              0     1         0
5 5 TCGA-BF-A1Q0              0              0     0         0
6 6 TCGA-BF-A3DJ              0              1     0         1
###Calculating Odds ratios and GOI frequencies for the raw data###
cohort_size=length(alldata_comp$Positive_Ctrl1)
pc1pc2_contab_counts=contab_maker(alldata_comp$Positive_Ctrl1,alldata_comp$Positive_Ctrl2,alldata_comp)[2:1, 2:1]
# pc1pc2_contab_counts=pc1new_pc2_contab

goipc1_contab_counts=contab_maker(alldata_comp$genex,alldata_comp$Positive_Ctrl1,alldata_comp)[2:1, 2:1]
# goipc1_contab_counts=goinew_pc1_contab
###Had to add the 2:1 bits because the contab maker spits out NN YY whereas we wanted YNYN
goipc2_contab_counts=contab_maker(alldata_comp$genex,alldata_comp$Positive_Ctrl2,alldata_comp)[2:1, 2:1]
# pc1pc2_contab_counts=gene_pair_2_table
# goipc1_contab_counts=contab_maker(alldata_comp$genex,alldata_comp$Positive_Ctrl1,alldata_comp)[2:1, 2:1]
# goipc1_contab_counts=gene_pair_1_table

cohort_size_curr=cohort_size
# goipc2_contab_counts=contab_maker(alldata_comp$genex,alldata_comp$Positive_Ctrl2,alldata_comp)[2:1, 2:1]
pc1pc2_contab_probabilities=pc1pc2_contab_counts/cohort_size_curr
goipc1_contab_probabilities=goipc1_contab_counts/cohort_size_curr
goipc2_contab_probabilities=goipc2_contab_counts/cohort_size_curr
# pc1pc2_contab_probabilities=pc1pc2_contab_counts
# goipc1_contab_probabilities=goipc1_contab_counts
# goipc2_contab_probabilities=goipc2_contab_counts/cohort_size

or_pc1pc2=pc1pc2_contab_probabilities[1,1]*pc1pc2_contab_probabilities[2,2]/(pc1pc2_contab_probabilities[1,2]*pc1pc2_contab_probabilities[2,1])
or_goipc1=goipc1_contab_probabilities[1,1]*goipc1_contab_probabilities[2,2]/(goipc1_contab_probabilities[1,2]*goipc1_contab_probabilities[2,1])
or_goipc2=goipc2_contab_probabilities[1,1]*goipc2_contab_probabilities[2,2]/(goipc2_contab_probabilities[1,2]*goipc2_contab_probabilities[2,1])

goi_freq=goipc1_contab_probabilities[1,1]+goipc1_contab_probabilities[1,2]
# goi_freq=.25
# class(goi_freq)

###

###Downsampling PC1 to the probability of GOI without changing ORs###
###The function below converts contingency table data to a new contingency table in which the data is downsampled to the desired frequency, aka the frequency of the GOI in this case###
pc1new_pc2_contab=contab_downsampler(pc1pc2_contab_probabilities,goi_freq)
goinew_pc1_contab=contab_downsampler(goipc1_contab_probabilities,goi_freq)
goinew_pc2_contab=contab_downsampler(goipc2_contab_probabilities,goi_freq)
##original contab:
head(pc1pc2_contab_probabilities)
           [,1]      [,2]
[1,] 0.01424501 0.2592593
[2,] 0.49857550 0.2279202
###downsampled contab:
head(pc1new_pc2_contab)
            [,1]      [,2]
[1,] 0.005935423 0.1080247
[2,] 0.608066588 0.2779733
pc1rawpc2_contabs_sims=contab_simulator(pc1pc2_contab_probabilities,1000,cohort_size_curr)
pc1pc2_contabs_sims=contab_simulator(pc1new_pc2_contab,1000,cohort_size_curr)
goipc1_contabs_sims=contab_simulator(goinew_pc1_contab,1000,cohort_size_curr)
goipc2_contabs_sims=contab_simulator(goinew_pc2_contab,1000,cohort_size_curr)
# goipc2_contabs_sims=contab_simulator(goinew_pc2_contab,1000,cohort_size)
# head(pc1pc2_contabs_sims) #each row in this dataset is a new contab
pc1rawpc2_contabs_sims=data.frame(pc1rawpc2_contabs_sims)
  pc1rawpc2_contabs_sims=pc1rawpc2_contabs_sims%>%
  mutate(or=p11*p00/(p10*p01))

pc1pc2_contabs_sims=data.frame(pc1pc2_contabs_sims)
  pc1pc2_contabs_sims=pc1pc2_contabs_sims%>%
  mutate(or=p11*p00/(p10*p01))
  
goipc1_contabs_sims=data.frame(goipc1_contabs_sims)
  goipc1_contabs_sims=goipc1_contabs_sims%>%
  mutate(or=p11*p00/(p10*p01))
  
goipc2_contabs_sims=data.frame(goipc2_contabs_sims)
goipc2_contabs_sims=goipc2_contabs_sims%>%
mutate(or=p11*p00/(p10*p01))
  
# goipc2_contabs_sims=data.frame(goipc2_contabs_sims)
#   goipc2_contabs_sims=goipc2_contabs_sims%>%
#   mutate(or=p11*p00/(p10*p01))
pc1rawpc2_contabs_sims$comparison="pc1rawpc2"
pc1pc2_contabs_sims$comparison="pc1pc2"
goipc1_contabs_sims$comparison="goipc1"
goipc2_contabs_sims$comparison="goipc2"
or_median_raw=quantile(pc1rawpc2_contabs_sims$or,na.rm = T)[3]
or_uq_raw=quantile(pc1rawpc2_contabs_sims$or,na.rm = T)[4]
or_median_downsampled=quantile(pc1pc2_contabs_sims$or,na.rm = T)[3]
or_uq_downsampled=quantile(pc1pc2_contabs_sims$or,na.rm = T)[4]

pc1rawpc2_contabs_sims=pc1rawpc2_contabs_sims%>%
  mutate(isgreater_raw_median=case_when(or>or_median_raw~1,
                             TRUE~0),
         isgreater_raw_uq=case_when(or>or_uq_raw~1,
                             TRUE~0),
         isgreater_median=case_when(or>or_median_downsampled~1,
                             TRUE~0),
         isgreater_uq=case_when(or>or_uq_downsampled~1,
                             TRUE~0)
         )
pc1pc2_contabs_sims=pc1pc2_contabs_sims%>%
  mutate(isgreater_raw_median=case_when(or>or_median_raw~1,
                             TRUE~0),
         isgreater_raw_uq=case_when(or>or_uq_raw~1,
                             TRUE~0),
         isgreater_median=case_when(or>or_median_downsampled~1,
                             TRUE~0),
         isgreater_uq=case_when(or>or_uq_downsampled~1,
                             TRUE~0)
         )
goipc1_contabs_sims=goipc1_contabs_sims%>%
  mutate(isgreater_raw_median=case_when(or>or_median_raw~1,
                             TRUE~0),
         isgreater_raw_uq=case_when(or>or_uq_raw~1,
                             TRUE~0),
         isgreater_median=case_when(or>or_median_downsampled~1,
                             TRUE~0),
         isgreater_uq=case_when(or>or_uq_downsampled~1,
                             TRUE~0)
         )

goipc2_contabs_sims=goipc2_contabs_sims%>%
  mutate(isgreater_raw_median=case_when(or>or_median_raw~1,
                             TRUE~0),
         isgreater_raw_uq=case_when(or>or_uq_raw~1,
                             TRUE~0),
         isgreater_median=case_when(or>or_median_downsampled~1,
                             TRUE~0),
         isgreater_uq=case_when(or>or_uq_downsampled~1,
                             TRUE~0)
         )
# pc1pc2_contabs_sims=pc1pc2_contabs_sims%>%
#   mutate(isgreater=case_when(or>=or_pc1pc2~1,
#                              TRUE~0))
# goipc1_contabs_sims=goipc1_contabs_sims%>%
#   mutate(isgreater=case_when(or>=or_pc1pc2~1,
#                              TRUE~0))
# goipc2_contabs_sims=goipc2_contabs_sims%>%
#   mutate(isgreater=case_when(or>=or_pc1pc2~1,
#                              TRUE~0))
pc1rawpc2_isgreater_raw_median=sum(pc1rawpc2_contabs_sims$isgreater_raw_median)
pc1rawpc2_isgreater_raw_uq=sum(pc1rawpc2_contabs_sims$isgreater_raw_uq)
pc1rawpc2_isgreater_median=sum(pc1rawpc2_contabs_sims$isgreater_median)
pc1rawpc2_isgreater_uq=sum(pc1rawpc2_contabs_sims$isgreater_uq)

pc1pc2_isgreater_raw_median=sum(pc1pc2_contabs_sims$isgreater_raw_median)
pc1pc2_isgreater_raw_uq=sum(pc1pc2_contabs_sims$isgreater_raw_uq)
pc1pc2_isgreater_median=sum(pc1pc2_contabs_sims$isgreater_median)
pc1pc2_isgreater_uq=sum(pc1pc2_contabs_sims$isgreater_uq)

goipc1_isgreater_raw_median=sum(goipc1_contabs_sims$isgreater_raw_median)
goipc1_isgreater_raw_uq=sum(goipc1_contabs_sims$isgreater_raw_uq)
goipc1_isgreater_median=sum(goipc1_contabs_sims$isgreater_median)
goipc1_isgreater_uq=sum(goipc1_contabs_sims$isgreater_uq)


plotting_df=rbind(pc1pc2_contabs_sims,goipc1_contabs_sims,goipc2_contabs_sims)
# plotting_df=rbind(pc1pc2_contabs_sims,goipc1_contabs_sims)
# 


ggplot(plotting_df,aes(x=(or),fill=comparison))+
  geom_histogram(bins=40,alpha=0.55,position="identity")+
  # geom_histogram(bins=50,alpha=0.55)+
  scale_y_continuous(expand=c(0,0),name="Count")+
  scale_x_continuous(expand=c(0,0),trans="log10",name="Odds Ratio")+
  scale_fill_brewer(palette="Set2")+
  # geom_vline(xintercept = or_pc1pc2)+
  cleanup
Warning: Transformation introduced infinite values in continuous x-axis
Warning: Removed 116 rows containing non-finite values (stat_bin).

ggplot(plotting_df,aes(y=(or),x=comparison),fill=factor(comparison))+
  geom_boxplot()+
  scale_y_continuous(name="Odds Ratio",trans="log10")+
  scale_x_discrete(name="")+
  scale_fill_brewer(palette="Set2")+
  geom_hline(yintercept = or_uq_downsampled,linetype="dashed")+
  cleanup+
  theme(legend.position = "none",
        axis.ticks.x = element_blank())
Warning: Transformation introduced infinite values in continuous y-axis
Warning: Removed 116 rows containing non-finite values (stat_boxplot).

# ggsave("paircon_boxplot.pdf",width = 3,height=2,units="in",useDingbats=F)

Section 2 Conclusion: ALKATI vs NRAS has no overlap with BRAF vs NRAS, i.e. 100% of the BRAF NRAS simulations lie outside of the ALKATI BRAF regime.


sessionInfo()
R version 4.0.0 (2020-04-24)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS  10.16

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] parallel  grid      stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] BiocManager_1.30.10 plotly_4.9.2.1      ggsignif_0.6.0     
 [4] devtools_2.3.0      usethis_1.6.1       RColorBrewer_1.1-2 
 [7] reshape2_1.4.4      ggplot2_3.3.3       doParallel_1.0.15  
[10] iterators_1.0.12    foreach_1.5.0       dplyr_1.0.6        
[13] VennDiagram_1.6.20  futile.logger_1.4.3 tictoc_1.0         
[16] knitr_1.28          workflowr_1.6.2    

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.4.6         tidyr_1.1.3          prettyunits_1.1.1   
 [4] ps_1.3.3             assertthat_0.2.1     rprojroot_1.3-2     
 [7] digest_0.6.25        utf8_1.1.4           R6_2.4.1            
[10] plyr_1.8.6           futile.options_1.0.1 backports_1.1.7     
[13] evaluate_0.14        httr_1.4.2           pillar_1.6.1        
[16] rlang_0.4.11         lazyeval_0.2.2       data.table_1.12.8   
[19] whisker_0.4          callr_3.7.0          rmarkdown_2.8       
[22] labeling_0.3         desc_1.2.0           stringr_1.4.0       
[25] htmlwidgets_1.5.1    munsell_0.5.0        compiler_4.0.0      
[28] httpuv_1.5.2         xfun_0.22            pkgconfig_2.0.3     
[31] pkgbuild_1.0.8       htmltools_0.4.0      tidyselect_1.1.0    
[34] tibble_3.1.2         codetools_0.2-16     viridisLite_0.3.0   
[37] fansi_0.4.1          crayon_1.4.1         withr_2.4.2         
[40] later_1.0.0          jsonlite_1.7.2       gtable_0.3.0        
[43] lifecycle_1.0.0      DBI_1.1.0            git2r_0.27.1        
[46] magrittr_2.0.1       formatR_1.7          scales_1.1.1        
[49] cli_2.5.0            stringi_1.4.6        farver_2.0.3        
[52] fs_1.4.1             promises_1.1.0       remotes_2.1.1       
[55] testthat_2.3.2       ellipsis_0.3.2       generics_0.0.2      
[58] vctrs_0.3.8          lambda.r_1.2.4       tools_4.0.0         
[61] glue_1.4.1           purrr_0.3.4          processx_3.5.2      
[64] pkgload_1.0.2        yaml_2.2.1           colorspace_1.4-1    
[67] sessioninfo_1.1.1    memoise_1.1.0